Mechanisms for the modulation of native glycine receptor channels by ethanol.

نویسندگان

  • Erika D Eggers
  • Albert J Berger
چکیده

Previously, we showed that ethanol increases synaptic glycine currents, an effect that depends on ethanol concentration and developmental age of the preparation. Glycine receptor (GlyR) subunits undergo a shift from alpha2/beta to alpha1/beta from neonate to juvenile ages, with synaptic glycine currents from neonate hypoglossal motoneurons (HMs) being less sensitive to ethanol than those from juvenile HMs. Here we investigate whether these dose and developmental effects are also present in excised membrane patches containing GlyRs and if ethanol changes response kinetics. We excised outside-out patches from rat HM somata and applied glycine using either a picospritzer or piezo stack translator. Ethanol (100 mM) increased the response to glycine (200 microM) of patches from neonate and juvenile HMs. However, 30 mM ethanol increased the response from only juvenile HM patches. Using a lower concentration of glycine (30 microM) to observe single channel openings, we found that 100 mM ethanol increased the number of GlyRs that open in response to glycine and decreased first latency to channel opening. To investigate GlyR kinetic properties, we rapidly applied 1 mM glycine for 1 ms and found that glycine currents were increased by ethanol (100 mM) at both ages. For patches from juvenile HMs, ethanol consistently decreased response rise-time and increased response decay time. Using kinetic modeling, we determined that ethanol's potentiation of the glycine response arises from an increase in the glycine association (k(on)) and a decrease in the dissociation (k(off)) rate constants, resulting in increased glycine affinity of the GlyR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Mechanism for the Dual Alcohol Modulation of Cys-loop Receptors

Cys-loop receptors constitute a superfamily of pentameric ligand-gated ion channels (pLGICs), including receptors for acetylcholine, serotonin, glycine and γ-aminobutyric acid. Several bacterial homologues have been identified that are excellent models for understanding allosteric binding of alcohols and anesthetics in human Cys-loop receptors. Recently, we showed that a single point mutation o...

متن کامل

Novel modulation of a nicotinic receptor channel mutant reveals that the open state is stabilized by ethanol.

Ethanol enhances the gating of a family of related ligand-gated ion channels including nicotinic acetylcholine, serotonin type 3, gamma-aminobutyric acid-A, and glycine receptors. This common action may reflect shared molecular and kinetic mechanisms. In all of these receptors, ethanol enhances multichannel currents elicited with low agonist concentrations, but not with high agonist concentrati...

متن کامل

Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected?

In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain ...

متن کامل

Interactions between Zinc and Allosteric Modulators of the Glycine Receptor.

The glycine receptor is a pentameric ligand-gated ion channel that is involved in fast inhibitory neurotransmission in the central nervous system. Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nanomolar to low-micromolar concentrations and inhibiting its effects at higher concentrations. Low-nanomolar concentrations of contaminating zinc in el...

متن کامل

Developmental changes in the modulation of synaptic glycine receptors by ethanol.

During postnatal motoneuron development, the glycine receptor (GlyR) alpha subunit changes from alpha2 (fetal) to alpha1 (adult). To study the effect this change has on ethanol potentiation of GlyR currents in hypoglossal motoneurons (HMs), we placed neurons into two groups: neonate [postnatal day 1 to 3 (P1-3)], primarily expressing alpha2, and juvenile (P9-13), primarily expressing alpha1. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 91 6  شماره 

صفحات  -

تاریخ انتشار 2004